

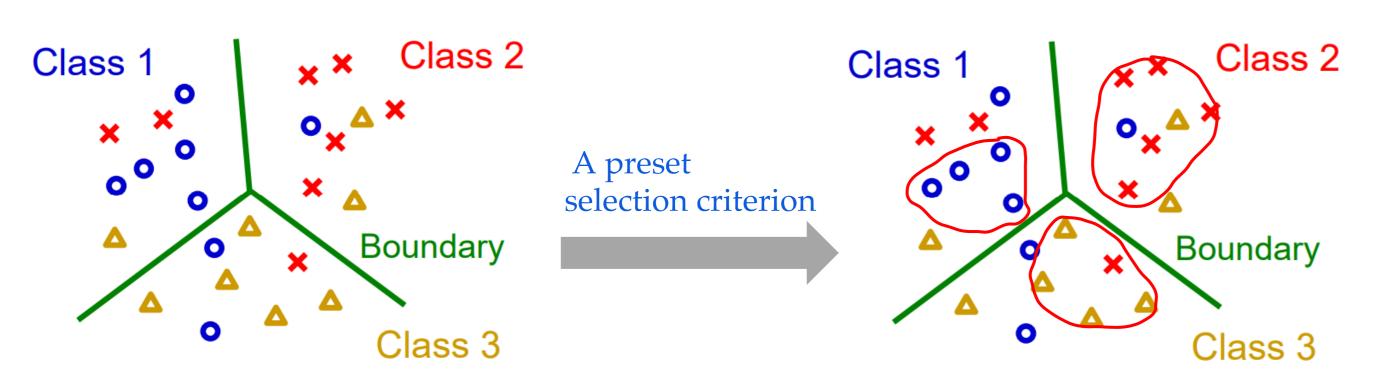
Summary

- > A novel selection criterion dubbed fluctuation criterion is proposed for retaining valuable samples lying around decision boundary.
- > A confidence regularization term is designed to further mitigate the over-confidence in noisy samples.
- > Any semi-supervised method can be applicable to our framework, improving the performance of SFT.
- > SFT outperforms its counterparts by sharp margins.

Code is available at *https://github.com/1998v7/Self-Filtering*

Sample selection strategy

Main idea: Use a preset selection criterion to select a subset with smaller noise ratio from the label-corrupted training set.

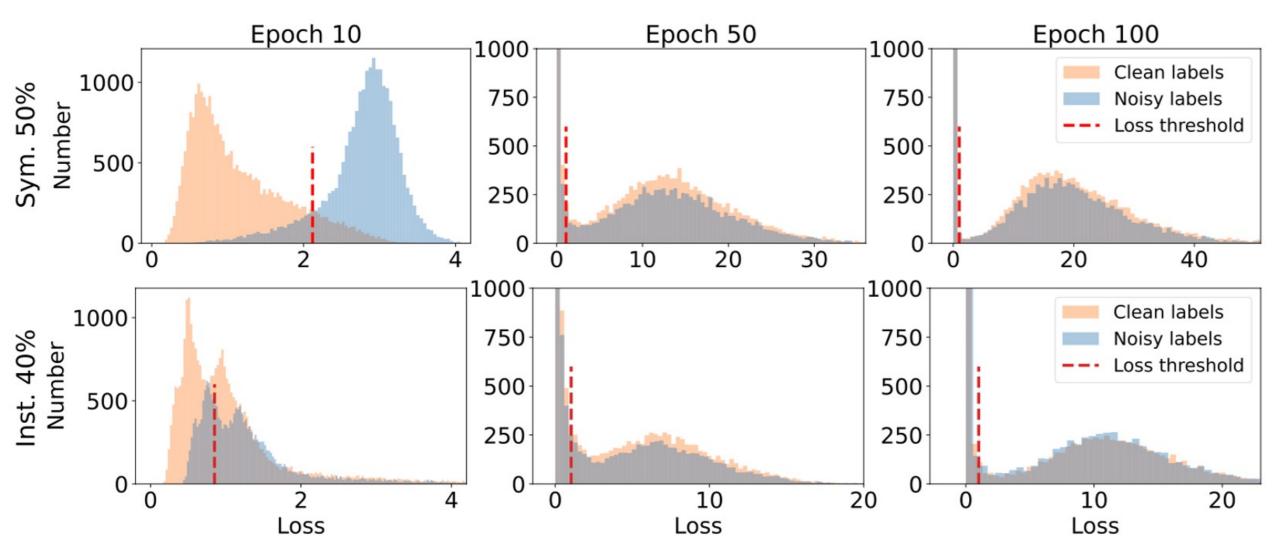


A label-corrupted training set

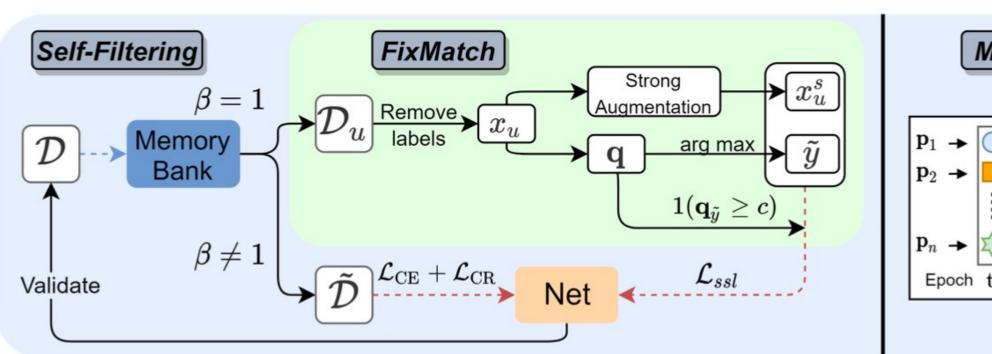
ACML 2021 Tutorial. Learning under Noisy Supervision

Selection bias in the small-loss criterion

Essential boundary samples are entangled with noise samples and discarded.



Our framework Self-Filtering



(b) Illustration of memory bank

Self-Filtering: A Noise-Aware Sample Selection for Label Noise with Confidence Penalization

Qi Wei, Haoliang Sun, Xiankai Lu, Yilong Yin TIME Lab, Shandong University

A subset with smaller noise ratio



Memory Bank $\mathbf{p}_2 \rightarrow \blacksquare \blacksquare \blacksquare \Box \Box \rightarrow \bullet$ \$\$

Fluctuation selection criterion

> Definition of **fluctuation event**:

$$\beta = (\arg \max(p^{t_1}) = y) \land (\arg \max(p^{t_1}) = y))$$

 \succ The selected set (filter the noise)

$$\widetilde{D} = \{ (x^i, y^i) \in D^{train} | \beta^i \neq 1 \}_{i=1}^N$$

The fluctuation criterion provides discriminative information for filtering the noise as shown in right figure.

Confidence regularization

> An adaptive weight function Confidence regularization term n.

$$\alpha(p_j) = \max(0, \mathrm{T} - \frac{p_j}{p_y})$$

Merits:

- \succ muting at the beginning and casting the objective to cross entropy for **fast convergence**.
- Adaptive strength for confidence penalty

Improved by semi-supervised technique

Self-Filtering can be improved by current semi-supervised learning strategy.

The selected (clean) set:	\widetilde{D} =

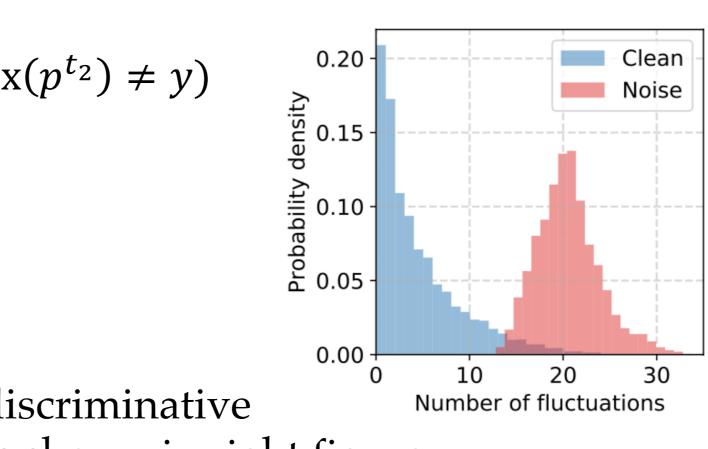
The filtered (noisy) set: $\widehat{D} =$

For(x, y) $\in \widetilde{D}$ and (x', y') $\in \widehat{D}$, the total training objective:

Experimental results

SFT achieves the SOTA performance on CIFAR-10 and CIFAR-100.

	Symm.		Pair.		Inst.	
Method	20%	40%	20%	40%	20%	40%
DMI [39]	$88.18{\pm}0.36$	$83.98{\pm}0.48$	$89.44 {\pm} 0.41$	$84.37 {\pm} 0.78$	$89.14 {\pm} 0.36$	$84.78 {\pm} 1.97$
Peer Loss [17]	$88.97{\pm}0.47$	$84.29 {\pm} 0.52$	$89.61 {\pm} 0.66$	$85.18{\pm}0.87$	$89.94 {\pm} 0.51$	$85.77 {\pm} 1.19$
Co-teaching [9]	$87.16 {\pm} 0.11$	$83.59 {\pm} 0.28$	$86.91 {\pm} 0.37$	$82.77 {\pm} 0.57$	$86.54 {\pm} 0.11$	$80.98 {\pm} 0.39$
JoCoR [32]	$88.69 {\pm} 0.19$	$85.44 {\pm} 0.29$	$87.75 {\pm} 0.46$	$83.91 {\pm} 0.49$	$87.31 {\pm} 0.27$	$82.49 {\pm} 0.57$
SELFIE [27]	$90.18{\pm}0.25$	$86.27 {\pm} 0.31$	$89.29 {\pm} 0.19$	$85.71 {\pm} 0.30$	$89.24 {\pm} 0.27$	$84.16 {\pm} 0.44$
CDR [35]	$89.68{\pm}0.38$	$86.13 {\pm} 0.44$	$89.19 {\pm} 0.29$	$85.79 {\pm} 0.41$	$90.24 {\pm} 0.39$	$83.07 {\pm} 1.33$
Me-Momentum [3]	$91.44{\pm}0.33$	$88.39 {\pm} 0.34$	$90.91 {\pm} 0.45$	$87.49 {\pm} 0.56$	$90.86 {\pm} 0.21$	$86.66 {\pm} 0.91$
PES[4]	$92.38{\pm}0.41$	$87.45 {\pm} 0.34$	$91.22{\pm}0.42$	$89.52 {\pm} 0.91$	$\textbf{92.69}{\pm}\textbf{0.42}$	$89.73 {\pm} 0.51$
SFT (ours)	$\textbf{92.57}{\pm}\textbf{0.32}$	$\textbf{89.54}{\pm}\textbf{0.27}$	$91.53{\pm}0.26$	$\textbf{89.93}{\pm}\textbf{0.47}$	$91.41{\pm}0.32$	$89.97{\pm}0.49$
DMI [39]	$58.73 {\pm} 0.70$	$49.81{\pm}1.22$	$59.41 {\pm} 0.69$	$48.13 {\pm} 0.52$	$58.05 {\pm} 0.20$	$47.36 {\pm} 0.68$
Peer Loss [17]	$58.41 {\pm} 0.55$	$50.53 {\pm} 1.31$	$58.73 {\pm} 0.51$	$50.17 {\pm} 0.42$	$58.91 {\pm} 0.41$	$48.61 {\pm} 0.78$
Co-teaching [9]	$59.28{\pm}0.47$	$51.60 {\pm} 0.49$	$58.07 {\pm} 0.61$	$49.79 {\pm} 0.69$	$57.24 {\pm} 0.69$	$49.39{\pm}0.99$
JoCoR [32]	$64.17 {\pm} 0.19$	$55.97 {\pm} 0.46$	$60.42 {\pm} 0.35$	$50.97{\pm}0.58$	$61.98{\pm}0.39$	$50.59 {\pm} 0.71$
SELFIE [27]	$67.19 {\pm} 0.30$	$61.29 {\pm} 0.39$	$65.18 {\pm} 0.23$	$58.67 {\pm} 0.51$	$65.44 {\pm} 0.43$	$53.91 {\pm} 0.66$
CDR [35]	$66.52 {\pm} 0.24$	$60.18 {\pm} 0.22$	$66.12 {\pm} 0.31$	$59.49 {\pm} 0.47$	$67.06 {\pm} 0.50$	$56.86 {\pm} 0.62$
Me-Momentum [3]	$68.03{\pm}0.53$	$63.48{\pm}0.72$	$68.42 {\pm} 0.19$	$59.73 {\pm} 0.47$	$68.11 {\pm} 0.57$	$58.38 {\pm} 1.28$
PES [4]	$68.89{\pm}0.41$	$64.90{\pm}0.57$	$69.31 {\pm} 0.25$	$59.08{\pm}0.81$	$70.49 {\pm} 0.72$	$65.68{\pm}0.44$
SFT (ours)	$\textbf{71.98}{\pm}\textbf{0.26}$	$69.72{\pm}0.31$	$71.23 {\pm} 0.29$	$\textbf{69.29}{\pm}\textbf{0.42}$	$71.83{\pm}0.42$	$69.91{\pm}0.54$



$$L_{CR} = -\frac{1}{K} \sum_{k \in [K]} \alpha(p_j) \cdot \log p_k$$

$$= \{ (x^{i}, y^{i}) \in D^{train} | \beta^{i} \neq 1 \}_{i=1}^{N}$$
$$= \{ (x^{i}, y^{i}) \in D^{train} | \beta^{i} = 1 \}_{i=1}^{N}$$

 $L_{CR}(x, y) + \alpha \cdot L_{SSL}(x', y')$

More analyses

Visualization of selection

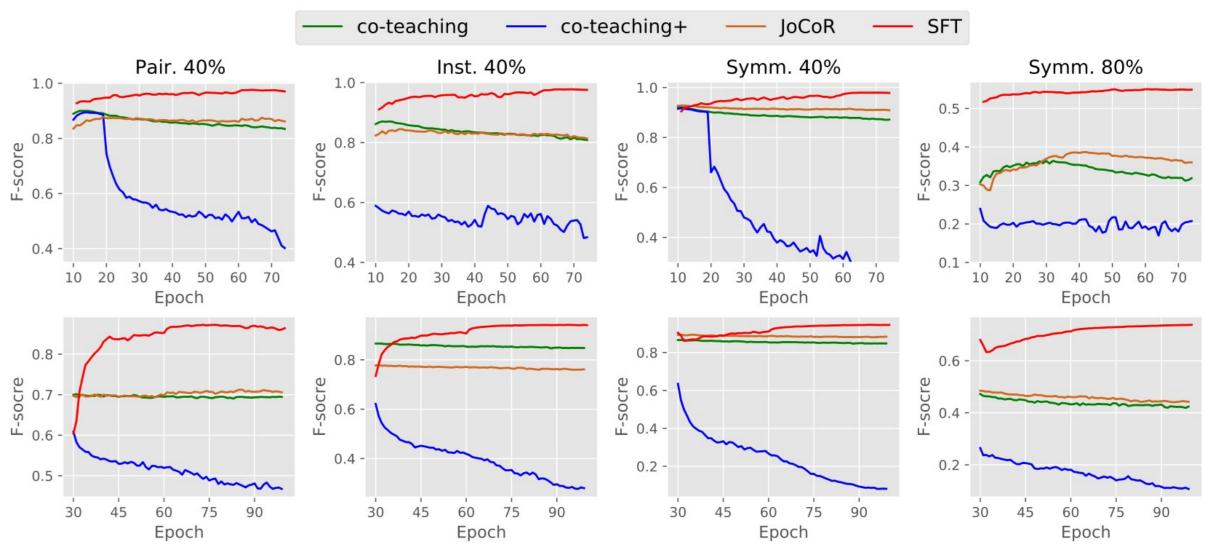
Green points: selected in epoch 0-40

Blue points: selected in epoch 40-60

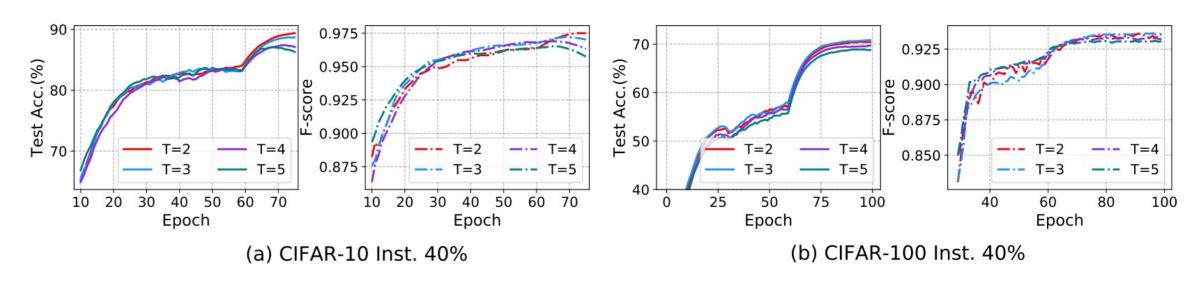
Red points: selected in epoch 60-75

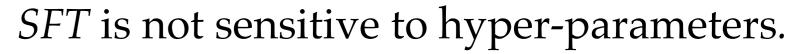
SFT selects more boundary examples as training proceeds.

Stable selection curves

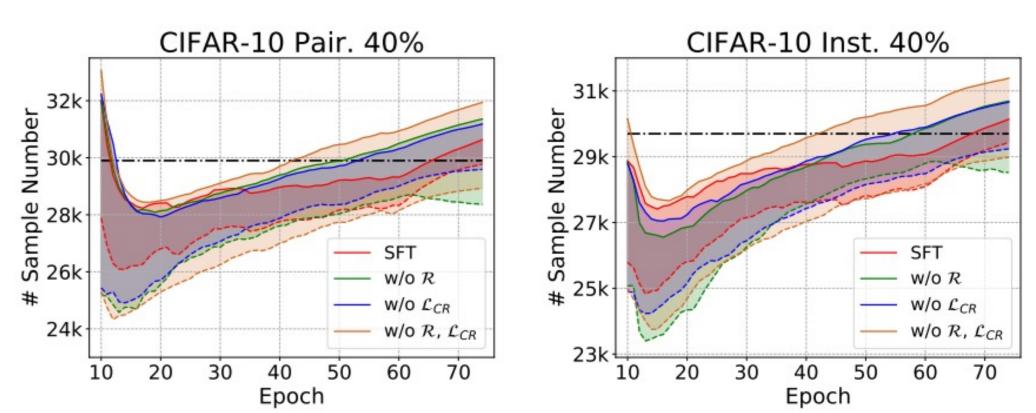


Hyper-parameter selection





Ablation study



With the support of the two terms, the selected subset contains less noisy labels

Contact

Mail: <u>1998v7@gmail.com</u> Towards Intelligence Mechanism Lab School of Software – Shandong University – China

Higher F1-score of selection results is achieved by *SFT*.